[bookmark: _s9rz0py2taod]Rock / Paper / Scissors 
[bookmark: _q6sc1shhur7t]Outline / Decomposition
1. Randomly generate computer’s choice (rock / paper / scissors)
2. Get (and check) user choice.  Accept rock (r), paper (p) or scissors (p).  Change choice so it is lowercase rock / paper / scissors for comparison purposes
3. Compare user choice and computer choice
4. Ask user for number of rounds / continuous mode
5. Set up looping (program loops until exit code is entered / number of rounds is reached)	Comment by Jennifer Gottschalk: This was done as part of component 4!
6. Set up score / end game summary
7. Allow game to be replayed
[bookmark: _cpk8ihyqzhzu]Version Log
[image: ]
[bookmark: _tv54k8mbuy2c]Component Testing
1. [bookmark: _3qzccq5b7qxi]Randomly generate computer’s choice (rock / paper / scissors)

	Test Data
	Expected 

	Randomly generate 20 items (rock / paper / scissors)
	Each of rock / paper / scissors should appear in the list several times.  The order should be random



[image: ]

2. [bookmark: _yftrjz6kdn9q]Ask user for their choice

	Test Data
	Expected 

	Rock
	Accepted, changed to ‘rock’ (note lower case)

	PAPER
	Accepted, changed to ‘paper’

	scissors
	Accepted, stays as ‘scissors’

	R
	Accepted, changed to ‘rock’

	p
	Accepted, changed to ‘paper’

	S
	Accepted, changed to ‘scissors’

	<enter>
	Error message ‘please enter rock / paper or scissors’



[image: ]

3. [bookmark: _q37w63nx2jw5]Compare user choice and computer choice

	Test Data (user vs computer)
	Expected 

	rock  vs rock 
	draw

	paper vs paper
	draw

	 scissors vs  scissors
	draw

	rock  vs scissors
	User wins

	paper vs rock 
	User wins

	scissors vs paper
	User wins

	scissors vs rock 
	User loses

	rock  vs paper
	User loses

	paper vs scissors
	User loses



Results were as expected.  Key:  Yellow ⇒ draw, Red ⇒ user loses, Green ⇒ user wins
[image: ]
[bookmark: _onvrccwiny7l]4 & 5. Set up round mechanics (allow user to choose number of rounds / continuous mode)

	Test Data
	Expected 

	xlii
	Please either press <enter> (continuous mode) or enter an integer that is more than / equal to 1.

	2.5
	Please either press <enter> (continuous mode) or enter an integer that is more than / equal to 1.

	0 <boundary>
	Please either press <enter> (continuous mode) or enter an integer that is more than / equal to 1.

	1 <boundary>
	Program continues

	3

Round 1: Rock
Round 2: Paper
Round 3: Scissors


	Game goes through three rounds, Note headings below…)

Round 1 of 3, You chose Rock
Round 2 of 3, You chose Paper
Round 3 of 3, You chose Scissors

Thank you for playing
<ends>

	<enter>



Choose an option
Choose an option 
xxx
	You have chosen continuous mode - please play as normal.   To stop playing choose ‘xxx’ instead of rock / paper / scissors.

Round 1, you chose
Round 2, you chose

Thank you for playing
<ends>



Notes: For this component I just wanted to get the round mechanics working so I did not check the user choice / compare choices.  I will put the components together into a fully working game a bit later in this process.  I edited the instruction for continuous mode (it’s a bit different to the above plan) - it might change a bit more depending on feedback during usability testing.

[image: ]

[image: ]



[bookmark: _y1z6uewmh9nc]6. Set up score / end game summary

	Notes
For testing purposes, the computer choice will be displayed so that we can choose to win / lose / draw for a given round.  This ‘component’ combines several components into a working game which has a round summary at the end.

During the development of the game I realised that allowing users to exit using ‘xxx’ if they were not in continuous mode was desirable.  I have added a test to show that the ‘emergency exit’ works.



	Test Data
	Expected 

	Rounds: 5

Round 1: win
Round 2: win
Round 3: lose
Round 4: lose
Round 5: tie
	Should play five games.  Summary should be as follows:

Round 1: won
Round 2: won
Round 3: lost
Round 4: lost
Round 5: tie
Won: 2    |   Lost: 2    | Draw: 1

	Rounds 10

Round 1: win
Round 2: lose
Round 3: draw
Round 4: xxx
	Should play three games not 10 and then exit.  

Round 1: won
Round 2: lost
Round 3: tie
Won: 1    |   Lost: 1    | Draw: 1



[image: ]
[bookmark: _9pad0b1892ik]7. Allow game to be replayed

	Test Data
	Expected 

	Rounds: <enter>
Round 1: win
Round 2: win
Round 3: xxx

Again? <enter>

Rounds: 3
Round 1: win
Round 2: lose
Round 3: tie

Again? <n>

	Summary should be as follows;
Round 1: won
Round 2: won

Won: 2    |   Lost: 0    | Draw: 0

<loops>

Second game summary should be as follows:

Round 1: won
Round 2: lost
Round 3: tied

Won: 1    |   Lost: 1    | Draw: 1

<ends>



[image: ]
[bookmark: _j1dfc68bolox]Assembled Outcome Testing
The assembled outcome is really similar to Component 7 but the headings / outputs are more readable.  I recycled my heading code from a previous project.  It also includes an introduction to the game (this only displays once)

	Test Data
	Expected 

	Rounds: <enter>
Round 1: r
Round 2: p
Round 3: xxx

Again? <enter>

Rounds: 3
Round 1: s
Round 2: s
Round 3: s

Again? <n>

	Introduction / instructions are displayed.

Plays two rounds and gives correct results

<loops>

Second game summary should be as follows:

Plays three rounds with correct results and easy to read feeeback

“Thanks for playing”
<ends>




[image: ]
[bookmark: _xn7t3g59l9cx]Usability Testing

My user did not like the lowercase ‘r’ / ‘s’ / ‘p’ but that was not really a usability issue and she managed to play the game very easily without needing any help.  The feedback was sufficiently clear that she did not get ‘lost’ and knew what to do at all times.  No changes were needed.

She liked being able to choose between a specific number of rounds and continuous mode although it was interesting that she did not try continuous mode or use the emergency exit ‘xxx’ code.
[bookmark: _eecm6wj3zxqi]Post Usability Test…
Not needed.  I did not make any changes to my program as my user did not experience any issues.  It is worth noting that I used several strategies to ensure my program was usable and these were based on experience gained in previous projects.
[bookmark: _qq2hq0u2ie7u]Social and End User Considerations…

How did you ensure that your task was suitable for your chosen audience?
Rock, Paper, Scissors is a well known game that appeals to a wide audience.  There were no social considerations that I needed to take into account.
How have you honoured copyright?
There were no copyright issues - the game / rules are in the public domain and I developed all the code myself.
How did you make your quiz easy to use?
· Users can enter either the full word (rock / paper / scissors) or the initial letter (r / p / s) when choosing an object.  If they don’t choose a valid option, they are asked to try again.
· The quiz includes initial instructions and has an emergency exit (users can type ‘xxx’ to end a game at any point).
· Including a ‘continuous’ mode was a good idea as it means that if a user is not sure how many rounds they want to play, the can continue to play for as long as they wish.
· I recycled previous code to ensure that headings / feedback statements were clear and easy to read.

Level 6 Digital Technologies & Hangarau Matihiko
Teaching and Learning programme 1 - Planning & Programming (Python)
image2.png

image1.png

image5.png

image6.png

image7.png

image9.png

image8.png

image4.png

image3.png

